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Executive Summary

This memo derives a particular use of a rate-dependent, perfectly plastic Von Mises Plasticity con-
stitutive model that represents a Newtonian (or Bingham) fluid. Only two parameters are needed:
the viscosity and bulk modulus to complete the model parameterization. Under certain deforma-
tions, the model exactly represents a Newtonian fluid. Under others, the model shear thins. A
Newtonian fluid representation may be used in confined flow applications in which a fluid-solid
interaction is desired but code coupling is not.
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1 Introduction

On occasion, analysts need to represent confined fluid flow behavior in components. The usual
approach is to use a nearly incompressible elastic material that essentially has no shear resistance.
While this formalism may be satisfactory in some applications, it is poor if the fluid stresses exerted
on surrounding materials are desired. In this memo, we present an alternative approach that uses
a rate dependent J2 (Von Mises) plasticity model which produces Newtonian Fluid-like behavior
under certain conditions, and we provide an example on how to calibrate it.

First, let us define the shear stress response of a Newtonian fluid,

devσσσ = 2η devddd, (1)

wherein σσσ is the Cauchy stress, ddd is the spatial rate of deformation (symmetric part of the spatial
velocity gradient), η is the viscosity, and “dev” denotes a deviatoric operator (see reference [2]).
The viscosity is constant for a Newtonian fluid. Notice that the deviatoric Cauchy stress is propor-
tional to the shear strain rate, and not the shear strain, as it would be for an elastic material. Thus,
for a constant shear strain rate (deviatoric rate of deformation), the deviatoric part of the Cauchy
stress is constant. In contrast, consider a linear elastic isotropic constitutive response:

devσσσ = 2µ devεεε, (2)

where µ is the shear modulus and εεε is the small strain tensor. In the small strain limit, where
we can ignore objectivity of the stress rate, an isotropic linear elastic solid responds to a constant
deviatoric strain rate with a constant rate of increase of the deviatoric stress response such as:

devσ̇σσ = 2µ devε̇εε., (3)

Clearly, Equation 3 is not equivalent to Equation 1 even in the small deformation limit. Therefore,
an elastic solid can never represent a Newtonian fluid.

However, qualitatively, plastic flow resembles fluid flow. We shall show that we can more ac-
curately approximate a Newtonian fluid with the proper choice of a rate dependent Von Mises
plasticity constitutive model. We will consider an isotropic perfectly plastic model using a hy-
perelastic formulation (due to its theoretical simplicity) for this work compared with hypoelastic
formulations built into the LAME constitutive model library (see [4]). In this memo, isotropic J2
plasticity is considered under perfectly plastic (zero hardening) conditions. The rate dependence
is chosen to give a constant viscosity.
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2 Rate Dependent Constitutive Model Theory

First, we discuss the hyperelastic-plastic formulation in which the deformation gradient is mul-
tiplicatively split into elastic and plastic parts. We develop a rate dependent form that extends a
standard form in the literature (see for example [3]). The deformation gradient is split as:

FFF = FFFeFFF p. (4)

The elastic response is determined by the elastic left Cauchy-Green deformation tensor through
the following constitutive function written in terms of the Kirchoff stress:

bbbe = FFFeFFFeT , (5)

τττ =
κ

2
(Je− J−1

e )111+µdev(b̄bbe), (6)

where Je = detFFFe = detFFF under isochoric plastic flow conditions such as occurs in a Newtonian
fluid motion. Here, κ is the initial bulk modulus and µ is the initial shear modulus. This response
linearizes to an isotropic linear elastic model in the small deformation limit. Finally, b̄bbe is the
unimodular part of bbbe given by,

b̄bbe
= J
− 2

3
e bbbe. (7)

The elastic state is bounded by the yield condition, which for an isotropic perfectly plastic rate
dependent form may be given by:

φ =
√

3J2−RτY ≤ 0, (8)

wherein τY is the initial yield strength in uniaxial tension/compression for a rate coefficient, R, of
1. In Equation 8, J2 is the second invariant of the deviatoric part of the Kirchoff stress defined as:

J2 =

√
1
2

devτττ : devτττ, (9)

such that
√

3J2 is the Von Mises Stress invariant of the Kirchoff stress. The form of the yield
condition in Equation 8 is consistent with the RATE PLASTICITY model used in this analysis. The
rate coefficient, R, is a user-specified function of the deviatoric rate of deformation,

R = R [ε̇] where ε̇ =

√
2
3

devddd : devddd (10)

Under perfectly plastic conditions, the yield strength changes only through the rate coefficient
R, and so we anticipate that by setting the form of R appropriately, we can represent the desired
behavior.

Note that because the shear modulus must be specified, there will always be an elastic strain regime,
the size of which depends on the ratio of the yield strength to the shear modulus. It may be
desirable, as in the case of thermoplastics near melt [1], to have a relatively large elastic regime
to represent a bingham fluid. Other than making the shear modulus and yield strength comparable
in magnitude, no adjustments to the model formulation are required to represent such behavior.
However, we will focus on Newtonian fluid behavior for the rest of this memo.
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3 Model Behavior under Pure Shear Conditions

First, we consider the constitutive response under pure shear conditions in stress space. Under
these conditions, the constitutive response exactly replicates a Newtonian fluid for finite strains
and any strain rate. Our approach is to prescribe the Cauchy stress under pure shear conditions and
then compute the resulting rate of deformation tensor. The prescribed Cauchy stress is deviatoric.
Since we are considering isotropic materials, a deviatoric stress state produces no volume change
so that the Cauchy and Kirchoff stresses are the same. The prescribed Cauchy stress, which we
project onto a Cartesian coordinate system, and its second deviatoric invariant are:

for t ≥ 0, σσσ =

σ0 0 0
0 −σ0 0
0 0 0

 , J2 = σ0. (11)

Given our Newtonian fluid constitutive model in Equation 1, the corresponding rate of deformation
and equivalent strain rate from Equation 10 are:

for t ≥ 0, ddd =
γ̇

2

1 0 0
0 −1 0
0 0 0

 , where γ̇ =
σ0

η
. (12)

ε̇ =
γ̇√
3

(13)

Next, we must select the yield surface rate function. Suppose we choose:

R [ε̇] = 3ε̇cR =
√

3γ̇cR, (14)

where cR = 1sec is a material constant that enforces correct units since the rate function is dimen-
sionless. Then, during fluid flow when the yield condition from Equation 8 is exactly satifsfied
(under perfectly plastic conditions as stated before), we have:

φ =
√

3J2−RτY = 0→ σ0 = γ̇cRτY , (15)

Hence, according to Equation 1 for the 11 and 22 components:

devτ11

devd11
=

σ0

γ̇/2
= 2η = 2cRτY → η = cRτY . (16)

Thus, under pure shear conditions, the rate dependent perfectly plastic constitutive equation ex-
actly replicates a Newtonian fluid response outside the elastic regime provided the rate function in
Equation 14 is used.

4 Model Behavior Under Simple Shear Conditions

In many confined flow applications that might be of interest in structural analysis, the pure shear
boundary value problem may not be particularly representative. So we turn our attention to sim-
ple shear, which is a specific homogenous motion boundary value problem that might be more
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appropriate for confined flow scenarios. The motion during simple shear is isochoric and rel-
evant to rheology since it is equivalent to the steady shear response of parallel plates. From a
solid mechanics perspective, we consider a unit cube, which is fixed on one face while the oppo-
site face is uniformly moved transversely to the normals of the two faces. Unlike the pure shear
problem of the previous section, simple shear is a fully displacement controlled boundary value
problem. Thus, we prescribe the motion and, consequently, the deformation gradient tensor left
Cauchy-Green deformation tensor and its unimodular part directly. Projecting these tensors into a
Cartesian coordinate system aligned with the axes of the unit cube, they are:

for t ≥ 0, FFF =

1 γ̇t 0
0 1 0
0 0 1

 , bbb = bbb =

1+(γ̇t)2 γ̇t 0
γ̇t 1 0
0 0 1

 , (17)

where γ̇ is the constant shear deformation rate parameter and t represents time starting from the
undeformed cube state. Second rank tensors are subsequently projected onto this same coordinate
system in this section. Note that this motion is isochoric as FFF and bbb are unimodular (unit deter-
minants). Hence, there is no pressure response for the isotropic constitutive models that we are
considering here. The rate of deformation, its deviatoric part, and the deviatoric part of bbb are:

for t ≥ 0, ddd = devddd =
γ̇

2

0 1 0
1 0 0
0 0 0

 , (18)

devbbb =

2
3(γ̇t)2 γ̇t 0

γ̇t −1
3(γ̇t)2 0

0 0 −1
3(γ̇t)2

 . (19)

The fact that Equation 19 contains diagonal terms while the rate of deformation does not is prob-
lematic. This indicates we should expect normal stress (11) and (22) that have no associated
deviatoric rate of deformation quantity. These normal stresses ultimately poison the Newtonian
fluid response at large deformations where γ̇t ≥ 1.

From Equation 18 and 10, the equivalent strain rate is given by:

ε̇ =
γ̇√
3
. (20)

Our analysis proceeds by considering the response right at the transition between elastic and plastic
behavior. Consider the elastic response first. Since J = Je = 1, the Kirchoff and Cauchy stresses
are identical. According to the Neohookean constitutive response, both stress tensors are given (in
the original Cartesian basis) by Equation 6 and their common J2 invariant as:

J2 = µγ̇t

√
1+

(γ̇t)2

3
. (21)

To relate the response to Newtonian flow, we will need the shear stress response in the elastic
regime:

τ12 = σ12 = µγ̇t. (22)
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Using the same rate dependence of the yield function as in the pure shear case (Equation 14) let us
consider when the stress state first meets the yield surface (φ = 0). From Equation 8, we require:

J2 = cR γ̇ τY . (23)

Since the yield condition changes with strain rate, we require that the perfectly plastic yield con-
dition must hold. Thus, we require that:

∂φ

∂ γ̇
|φ=0 = 0→ ∂ J2

∂ γ̇
− cR τY = 0, (24)

However, from Equation 21 within the elastic regime, just when the material reaches the yield
surface, we derive that:

∂ J2

∂ γ̇
= µt

√1+
(γ̇t)2

3
+

(γ̇t)2

3
√

1+ (γ̇t)2

3

 . (25)

Of course, following Equation 1 we are ultimately interested in:

∂devτ12

∂devd12
=

∂τ12

∂ γ̇/2
= 2

(
∂τ12

∂ J2

)
∂ J2

∂ γ̇
= 2cRτY


√

1+
τ2

12
3µ2 +

τ2
12

3µ2

√
1+ τ2

12
3µ2


−1

, (26)

which we have arrived at by computing
(

∂ J2
∂τττ12

)
using Equations 21 and 22 and then using Equa-

tion 26. Under small strain conditions, where γ̇t � 1 or τ12 � µ , the radial yield surface grows
linearly in time according to Equation 21. Its sensitivity to strain rate is constant according to
Equation 25. As γ̇t ≈ 1, the radial yield surface is now quadratic in the shear strain while its
sensitivity to shear strain rate becomes linear. Thus, at finite shear strains, this constitutive model
softens under simple shear and hence would represent a shear thinning fluid.

Returning to our goal, a Newtonian fluid behavior requires that the right-hand side of Equation 26
is a constant (the viscosity), which it is clearly not under finite strain considerations. In the small
strain, Equation 26 linearizes to:

∂devτ12

∂devd12
=

∂τ12

∂ γ̇/2
= 2η = 2cRτY . (27)

Hence, under small shearing strains, a Newtonian fluid behavior is recovered. Recall that cR = 1
time unit, which is used simply to maintain units consistency. Therefore, to set the viscosity under
the small deformation condition, one need only choose the yield strength parameter multiplied by
the appropriate time unit to be the viscosity.
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5 Simple Shear Example

Consider the following example. Suppose we wish to model a very viscous Newtonian fluid with
a viscosity of 5100 Pascal seconds. For reference, honey and water at room temperature have
approximate viscosities of 40 and 1E-3 Pascal seconds respectively [1][2]. This high viscosity
could be associated with thermoplastics near melt or thermosetting polymers near gelation. Ide-
ally, we would model a rigid elastic-plastic response in which there would be negligible plastic
deformation. In practice, we must avoid numerical issues associated with large changes in ma-
terial stiffness. Therefore we consider a shear modulus that is 100 times that of the initial yield
strength (in uniaxial stress conditions), and we choose a poisson ratio of 0.45 to be near the in-
compressible regime. During loading, the shear stress response normalized to the yield strength
parameter (σ12/τY0) versus the simple shear deformation parameter (γ = γ̇t) is plotted for a few
different strain rates in Figure 1. The magenta circles denote the normalized shear stress at first
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Figure 1. Shear stress normalized to the yield strength parameter vs. the associated shear
component of the deformation gradient in simple shear. The strain axis has been
modified by the factor of 102 to show the elastic region, which is otherwise very small.

yield calculated from the viscosity derived from the model theory in Equation 26 multiplied by
twice the associated component of the rate of deformation from Equation 18. Agreement is ex-
cellent at small shearing strains. Newtonian fluid behavior is observed where the shear stress is
constant for a given strain rate in the plastic regime. If we extract the shear stress after yielding
and plot this response as a function of shear strain rate as well as the corresponding slope, we may
determine the viscosity as a function of strain rate in Figure 2.

It appears that the viscosity drops off quickly at larger strain rates. However, this behavior is
just a consequence of leaving the small strain regime. The appropriate way to understand the
model response is to look at the predicted viscosity from Equation 26 against the simple shear
deformation parameter γ , which is shown in Figure 3 for several decades of shear strain. For simple
shear shear deformation parameters smaller than 0.3, the viscosity is constant, and the response is
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Figure 2. Shear stress post yield normalized by the yield strength parameter vs. shearing strain
rate and normalized viscosity under simple shear conditions
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Figure 3. Simple Shear Normalized Viscosity vs. Log Shear Deformation Parameter
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Newtonian. When γ ≈ 2, the viscosity is approximately half of the user supplied viscosity. And
when γ ≈ 10, the viscosity is approximately just one tenth of the user supplied target. These results
are independent of strain rate. We note that when γ = 1, one axis of the unit cube has been sheared
by a 45 degree angle relative to its initial axis corresponding to a very large state of shear, and
γ � 1 would correspond to dramatically distorted finite elements that are unusable in practice.
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6 Sierra Solid Mechanics Input Syntax Example

We include an example material model input that uses a rate-dependent, Von Mises plasticity model
with perfect plasticity (no hardening). The user need only specify the bulk modulus and viscosity
up front in the APREPRO definitions. See [4].

# Zero, define your material properties. NOTE, The user must input:
# 1) VISCOSITY (Pa * seconds for example)
# 2) KBULK (Pa) the bulk modulus.
#
# The shear modulus should be large relative to the yield stress,
# but not too large for time step reasons.
# We suggestion 100*YIELDSTRESS
#{GSHEAR = 100.0*VISCOSITY}
# cR is assumed to be 1 second
#{CR = 1} # second
#{YIELDSTRESS = VISCOSITY/CR}

# First, define the yield condition rate function
begin function newtonianfluidratefun
type is analytic
evaluate expression is "3.0*x"

end function newtonianfluidratefun

# Second, define the hardening function (perfect plasticity so no hardening)
begin definition for function nohardfun
type is piecewise linear
begin values

0.0 {YIELDSTRESS}
1.0E9 {YIELDSTRESS}

end values
end definition for function nohardfun

# Finally, define the material model
begin material fluidmat
density = 1000 # kg / mˆ3. The user should change this parameter!
begin parameters for model rate_plasticity

shear modulus = {GSHEAR}
bulk modulus = {KBULK}
yield stress = {YIELDSTRESS}
hardening function = nohardfun
rate function = newtonianfluidratefun

end parameters for model rate_plasticity
end material fluidmat
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7 Summary

We have presented the use of a rate-dependent, perfectly plastic Von Mises Plasticity model as a
representation of a Newtonian fluid, which may be useful represent confined fluid flow in solid
mechanics applications. Under certain conditions, this constitutive model exactly represents a
Newtonian fluid, such as under pure shear. However, under other conditions, such as simple shear
which may be more relevant to confined fluid flow, this constitutive equation quickly becomes
non-Newtonian and its viscosity diminishes at finite strains. These results were derived within a
Hyper elastic-plastic formulation because the theoretical developments are more straightforward.
However, under hypo elastic plastic conditions, which represents the majority of elastic-plastic
constitutive models used within the LAME constitutive model library [4], the same results arise
for pure shear while qualitatively similar results will be produced under simple shear conditions.
That is, under pure shear, the constitutive response is exactly Newtonian for both hypo and hyper
elastic plastic models while under simple shear, both model types will produce shear thinning
behavior at finite strains but with different dependencies on the finite strain amplitude.

As a last note, this approach of using a rate dependent plasticity model to represent a Newtonian
(or Bingham) fluid features compressibility, but it will not represent cavitation phenomena should
the pressure become tensile [2]. We caution the users against pushing the model too far. It is best
used for qualitative purposes.
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